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Part I: Ice cloud model

(E)arly Wisdom
d

~
Two horizontally oriented cylinder models (Liou, 1972): (a) specific orientation

in the horizontal plane and (b) random orientations in the horizontal plane. 2




The single-scattering properties of specific oriented ice crystals are
very complicated (e.g., the phase function is two-dimensional)
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Optical phenomena by oriented plates

e False color sky simulations
* Red: [y, X3
* Green: /3, X0.7
* Blue: [j355 % 2
* Single-scattering RTM
* PPH cloud layer assumption
* Fish-eye camera

« COT:0.3

* CER: 100 um

 HOP fraction: 7.9%
 HOP tilting angle: 1.0°

Sun-dogs and sun-pillar appear in the simulated sky



Backscatter and Depolarization Ratio
Associated with Quasi-horizontally
Oriented Plates within lIce Clouds (Zhou,
Yang, and coauthors, 2012)
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Original idea: Y. Hu et al. Optics
Express 15, 53277-5332. 5
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Horizontally oriented ice
crystals (HOIC) exists in
46-65% optically thick
clouds that are
identified as ice clouds
or mixed-phase by
CALIPSO.

The percentage of
horizontally oriented
planar ice crystals
(HOP) in ice clouds is
quite low.

(Zhou, Yang, and
coauthors, 2012)



For passive remote sensing
applications, it is a valid
assumption that ice crystals in
the atmosphere are randomly

oriented!
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Ice particle models selected by the MODIS science team for (a) MODIS
Collection 4 (King et al. 2004), (b) MODIS Collection 5 (Baum et al. 2005), and
(c) MODIS Collection 6 (Platnick et al 2017).



Mixing ratio

CERES Ice Cloud Models

CERES Editions 2-4

Ice crystal images are scaled . .
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Ice particle models selected by the CERES science team: (a) a discrete model
used for CERES Editions 2-4; and (b) continuous mixing ratio of two habits
(potential CERES Edition 5). CERES Edition 4 model differs from Editions 2 and
3 in that the particle surface is assumed to be rough in Edition 4.




Consistency Check (VIS-NIR vs IR
retrieval techniques)
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Solar band optical thickness

Comparison of retrieved optical thickness values from a shortwave method (the
Nakajima-King bi-spectral method) and a longwave method (the split-window
technique). (a) Ice sphere, (b) CERES Edition 4 model, (c) MODIS Collection 6
model, and (d) Two-habit model (Potential CERES Edition 5 model). 10



Comparison of retrieved optical thickness values from the shortwave
technique (the Nakajima-King bi-spectral method)

10 280 404 1110
° 134 M 551
2 8 73 O 8 274
Q . » -
] w
= 6 27 _ O 6 - 68
Sphere g g © e
o 16 3 @ 34 3
c [0]
S 4 10° & 4- 18 ©
£ 2
Tg 6 F 9
g 2 4 g 2 5
Q
© . 3 & 3
| | | | | | 1 | | | | | | 1
0 2 4 6 8 10 0 2 4 6 8 10
Optical Thickness (THM) Optical Thickness (THM)
10 4 1460 o | 440
© 705 © 240
(6] kel
» 84 1 W g 131
o w
o 165 o 72 CERES Ed 2
MODISC6 5 & 80 O 6 39
a € o c
4 39 3 & 22 3
S 4 — 19 © g 4 12 ©
£ k3]
% 10 F 7
S 24 ® 2
g_ 5 % 4
. 3 0 . 3
T T T T T l 1 T I | T T 1 1
0 2 4 6 8 10 ] 0 2 4 6 8 10
Optical Thickness (THM) Two Habit Optical Thickness (THM)

(a) Ice sphere and Two-habit model (CERES Edition 5 model), (b) CERES Edition 4
model and Two-habit model, (c) MODIS Collection 6 model and Two-habit model,
and (d) CERES Edition2 model and Two-habit model. !



Ratio of retrieved optical thickness values based on an ice

model to the counterpart based on the Two-
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Loeb et al., 2018: Impact of ice microphysics on satellite cloud
retrievals and broadband flux radiative transfer model
calculations. J. Climate, 31, 1851-1864.

Cloud Property Differences at Aqua Overpass Time
(THM minus Smooth)
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- Overall optical depth difference is -2.3 (-28% of Global Mean) and RMS difference is 2.8 (32% of GM).
- Overall effective radius difference is -3.9 ocm (16% of GM) and RMS difference is 5.2 «m (16% of
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Loeb et al., 2018: Impact of ice microphysics on satellite cloud
retrievals and broadband flux radiative transfer model
calculations. J. Climate, 31, 1851-1864.

SW TOA Flux Difference at Aqua Overpass Time
(THM(Retriveal)/ THM(Downstream) minus Smooth(Retrieval)/Smooth(Downstream))
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- Overall regional RMS difference is ~1%. However, in some locations regional differences reach“%%.

- Differences tend to be positive in tropics and negative in midlatitudes.



* Findings by Loeb et al. (2018): radiative
fluxes derived using a consistent ice particle
model assumption throughout provide a more
robust reference for climate model evaluation
compared to existing ice cloud property
retrievals.

In other words, the same ice model must be
consistently used in forward remote sensing
implementation (look-up tables) and
downstream radiative forcing assessment.
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lce Water Path (IWP),
Optical Thickness (tau)

Effective Particle size (D)

IWP = constant * tau ¢ D_¢
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mean values of cloud ice-water path (kg m=) for 23 GCM simulations (adapted from
Waliser et al., 2009). Note that the blue (yellow) bars of GISSEH and GISSER that
extend above the top of the plot have values of 0.21 and 0.22 (0.34 and 0.36),

respectively. Observations are shown in the CERESMODIS-Terra column.
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Highlight of Part |

Still, it is necessary to use an

optimal ice model to reliably
retrieve:

 optical thickness (tau)

» effective particle size (D)

Again, IWP = constant ¢ tau ¢ D



Part Il—Snow Albedo Model

Snow albedo plays a dominant role in surface radiation
budget in Northern Hemisphere

oo S e e Snow albedo depends on:
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radiative transfer
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Qu and Hall, 2014 ClimDyn: Snow albedo feedback is determined by
(1) snow-cover shrink and (2) snow-albedo variability
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Numerous snow albedo models and parameterizations
have been developed based on a single-layer assumption.

but...
* Realistic snow has multiple layers.

* |tis sufficient to assume two-layer snow to reproduce observed
snow albedo with radiative transfer calculations (Grenfell, 1994)

20



Objectives

* Investigate the sensitivity of snow albedo to snow
microphysical properties based on a two-layer snow model.

* Develop a two-layer snow surface albedo parameterization
scheme for NASA Langley’s modified Fu-Liou broadband

radiative transfer model.

Reduce uncertainty in estimating the surface
radiation budget associated with snow albedo.



Bulk Snow Optlcal Property

Snow Grain Habit Mixture
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* Snow Grain Habit Mixture (SGHM) model (CERES meeting in
May 2018).

* BC internal inclusions in snow particles are considered.

* Particle size distribution (PSD) is parameterized in terms of
the gamma distribution based on in situ measurements.
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Two-layer Snow Albedo Model

Input Assumption

Top layer: SWE, R

e (L~ isconstant over
o1» Che BC

layers

* Snow albedo simulations: optical thickness = 960
e Vector adding-doubling RTM (Huang et al., 2015)
* Plane parallel homogeneous snow layers
* Optically semi-infinite depth of second snow layer
e Snow grain habit mixture (SGHM) model Variables:

* Top layer Snow Water Equivalent (SWE,)
Effective radii (R.,, R.,)
* BCinternal mixing (Cy)
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Comparison

1.0

0.8

0.6 -

0.4

0.2 1

Snow Surface Albedo

0.0 -

— This Study
— SNICAR
- ¢ Grenfell et al., 1994 |

0.5

1.0 1.5 2.0 2.5
Wavelength (um)

SNICAR model: (Flanner et

al., 2007)

* Single-layer

» Effective radius =80 «xm
(taken from Yasunari et
al., 2012)

This study:

* Two-layer

e Effective radius =52 um
(top), 160 um (second)

* Two-layer snow albedo model reproduce the observed snow albedo in
Antarctica (Grenfell et al., 1994).

* Our model is comparable to SNICAR model in the visible to 1.5 «xm
region and outperforms in the 2.0-2.5 o«m region.




Sensitivity Study (1/4)

Single layer snow

_ | | | | | | | | | | |
1.0 Effective Radius 1.0 ——— i
— 100 um 0.9 —oIIITITIIN
O (0.8-4 — 200um | o I 7 B
8 ——300um | @ [T
3 ——400um | = 0.8 -
< 0.6 - <
o Y- 500 um ® BC Mass Fraction
3] O
o & 0.74— 0ng/g B
5 0.4+ 5 —— 50 ng/g
ug') w 0.64— 100 ng/g B
o 2 " |— 500ng/g e
& 0.2- -5 0.5 - 1000 ng/g i
"~ |Solid lines: R, = 100 um
Dashed lines: R, = 500 um
0.0 - | I I | I T 0.4 T I I I EL T
0.5 1.0 15 20 2.5 3.0 0.2 04 0.6 0.8 1.0 1.2
Wavelength (um) Wavelength (um)

* Snow albedo is sensitive to the effective radius at near-infrared
wavelengths and to BC internal mixing at visible wavelengths, as

noticed by many previous studies. 25



Sensitivity Study (2/4)

Two-layer snow R =30 pm, R 4 = 500 pm
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 SWE in the top layer significantly changes snow albedo at near-
infrared wavelengths even if SWE is small.

* SWE effects visible snow albedo for polluted snow layers. 20



Sensitivity Study (3/4)

Single layer snow
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* Snow albedo is enhanced at high SZAs.

* The sensitivity is similar to that associated with the effective radius at
near infrared wavelengths, but not at visible wavelengths

» SZA dependence of snow albedo is enhanced for polluted snow.



Sensitivity Study (4/4)

Two-layer snow R =30 om, R 4, = 500 oxm
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* The top layer snow properties play a major role in the SZA dependence
of snow albedo, especially in the near-infrared regime.
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Snow Albedo Parameterization (1/4)

Based on the sensitivity of snow albedo to these
snow characteristics, we developed snow albedo
parameterizations:

v'Single layer snow albedo parameterization
(not discussed in this presentation)

v'Two-layer snow albedo parameterization

29



Snow Albedo Parameterization (2/4)

s,;» and ¢, are coefficients for two-layer parameterization
determined through the regression. Subscript ¢ = two-layer

Two-layer snow

R, = (1 — e-tORe1Ho) (ﬂ) + e ORerto (}ﬁ) where R, =30 um (1)

Ry Ry
=1 (ke)™ I =5, + (2)
at,enh — 'n 14 where n — St,l St,2as,0 ’
Ho
o=o ,+aoa (¢ ) wh Arg = A — A (3)
t t,0 t,ehn 5,0 where t,0 t,pure t

* For two-layer snow albedo parameterization, we use a formula for
representative snow albedo (¢,,) similar to He et al., (2018b), but we

use R_given by Eq. (1).

* Snow albedo enhancement is calculated based on o, from single
layer parameterization (with the top layer snow properties)

* Derive snow albedo based on two-layer snow by Eq. (3) 0



Snow Albedo Parameterization (3/4)
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* Band snow albedo values simulated with a rigorous radiative transfer
model and the parameterization scheme for the bands of NASA
Langley’s modified Fu-Liou model.

 The correlation coefficient is close to 0.99. 31



Snow Albedo Parameterization (4/4)
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* If we ignore the first layer snow with 2-cm thickness, snow albedo is underestimated
by up to 0.3, depending on snow microphysical properties.

* Ignoring the second layer snow leads to a slight increase in snow albedo. 32



Summary of Part li

 We investigated the sensitivity of snow albedo to snow
microphysical properties based on a two-layer snow
model.

* We developed single- and two-layer snow albedo

parameterizations for NASA Langley’s modified Fu-Liou
radiative transfer model.

 Future work: extend the snow albedo model to a snow
BRDF or PBRDF model for remote sensing applications.



